Multivariate modified Fourier expansions
نویسندگان
چکیده
In this paper, we review recent advances in the approximation of multivariate functions using eigenfunctions of the Laplace operator subject to homogeneous Neumann boundary conditions. Such eigenfunctions are known explicitly on a variety of domains, including the d-variate cube, equilateral triangle and numerous other higher dimensional simplices. Practical construction of truncated expansions is achieved using a mixture of asymptotic and classical quadratures. Moreover, by exploiting the hyperbolic cross, the number of expansion coefficients need only grow mildly with dimension. Despite converging uniformly throughout the domain, the rate of convergence of such expansions may be slow. We review two techniques to accelerate convergence. The first smoothes the function by interpolating certain derivatives of the function evaluated on the boundary of the domain. The second numerically computes a smooth, periodic extension of the function on a larger domain.
منابع مشابه
From high oscillation to rapid approximation III: Multivariate expansions
In this paper we expand upon the theme of modified Fourier expansions and extend the theory to a multivariate setting and to expansions in eigenfunctions of the Laplace– Neumann operator. We pay detailed attention to expansions in a d-dimensional cube and to an effective derivation of expansion coefficients there by means of quadratures of highly oscillatory integrals. Thus, we present asymptot...
متن کاملNonharmonic Gabor Expansions
We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion. In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity, exactness and deficienc...
متن کاملError bounds for high–dimensional Edgeworth expansions for some tests on covariance matrices
Problems of testing three hypotheses : (i) equality of covariance matrices of several multivariate normal populations, (ii) sphericity, and (iii) that a covariance matrix is equal to a specified one, are treated. High–dimensional Edgeworth expansions of the null distributions of the modified likelihood ratio test statistics are derived. Computable error bounds of the expansions are derived for ...
متن کاملSolving Differential Equations Using Modified VIM
In this paper a modification of He's variational iteration method (VIM) has been employed to solve Dung and Riccati equations. Sometimes, it is not easy or even impossible, to obtain the first few iterations of VIM, therefore, we suggest to approximate the integrand by using suitable expansions such as Taylor or Chebyshev expansions.
متن کاملFourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant coordinate systems and Gegenbauer polynomial expansions in Vilenkin’s polyspherical coordinates. We...
متن کامل